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Abstract—The dynamic plastic buckling of annealed OFHC copper cylindrical shells is treated by
experiment, finite element code calculation, and analysis. Initial velocity imperfections of the
impulsive loading were obtained from sheet explosive thickness measurements. The Johnson-Cook
relation was adopted for the copper. A comparison of the final profiles, their modal content, and
amplification {unctions showed good agreement among experimental, code and analytical results

INTRODUCTION

Our research on the explosively-formed penetrator (EFP), a conventional weapon, has
involved the application of the finite element code DYNA3D (Hallquist, 1988). EFPs
consist of a shallow metallic dish in front of encased explosive. As shown in Fig. | when
the explosive is detonated, the dish is projected and deformed into a projectile of tubular
shape. Large convergent plastic flow occurs that is almost axisymmetric but accompanied
by dynamic plastic buckling. The late stage of formation is similar to that of a cylindrical
shell responding to a radially inward impulse.

In order to acquire confidence in the finite element solution, we applied the code
directly to the less complex case of a cylindrical shell subjected to a radially inward impulse.
This case was also solved by classical analysis (Lindberg and Florence, 1987) to allow a
quantitative comparison of the final shapes and the spectral distributions of the amplitudes
of the modes forming the final shape. The same initial imperfections and approximately the
same dynamic constitutive equations were used in the code calculations and the analysis.

To evaluate the theoretical descriptions of the dynamic plastic buckling, we performed
experiments on cylindrical shells of anncaled OFHC copper in which the shells were
subjected to a uniform impulse from sheet explosive wrapped around the shells. Initial
velocity imperfections were obtained from thickness measurements of the explosive sheet.
The final profiles of the shells were measured and the modal distributions obtained for
comparisons with the corresponding results from the code and analysis. The main subject
for evaluation was the upplicability to our shell problem, of the constitutive equations in
the Johnson-Cook (1983) form, based on the dynamic tensile tests of Rajendran and
Bless (1985). Five shells were impulsively loaded at increasing intensity. Compurisons are
presented for the shell subjected to the largest impulse, which resulted in a final average
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g. 1. Simulation of penetrator formation.
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Fig. 2. Caleulated final deformation with dynamic plastic buckles (radial displacements shown
with x 3 magnification).

hoop cngincering strain of [8.3%. For a description of dynamic plastic buckling with
average hoop strains up to this magnitude, we found that the radius decrease and thickness
increase had to be inctuded in the analysis,

The amplitude of the dynamic plastic buckles in the copper cylinder subjected to the
largest impulse intensity, was approxinunitely 0.5 1.0% of the initial radius (0.018-0.035
mm). These buckles are small in amplitude yet can be detected manually in the post-test
inspection. Figure 2 shows a buckled cylinder profile from a finite clement calculation
corresponding to this experiment. The displacements in the figure have been amplified by
a factor of three to make the buckles more apparent. These buckles in the copper cylinder
are considerably smaller than those shown on the explosively formed penetrator in Fig. 1.
However, the ability to accurately model the imitial buckle growth in the copper cylinders
is a necessary condition for modeling the furge amplitude buckles growth in the copper
cylinders, which is @ necessury condition for modeling the large amplitude buckles in the
penetrator. A comparison of the finite element solution with the experiment and classical
analysis for the buckling of the copper cylinder allows us to validate that at least the
initiation of the plastic buckling in the penetrator is accurately modeled in the numerical
simulation.

The presentation starts with a brief description of the experiments, followed by a
description of the finite element simulations, an outline of the analysis and concludes with
a comparison of the results. The main conclusion of the work s that the finite element code,
DYNA3D, produced final shell protfiles and amplification spectra in very good agreement
with analytical results and by comparison with experimental results, gave a very good
description of the dynamic plastic buckling ; hence, the Johnson Cook dynamic constitutive
equation was applicable to the problem. Although the application of the code is for cases
with larger plastic deformations, as illustrated in Fig. |, the simpler evaluation case of
cylindrical shells provides some confidence in the code performance, especially because of
the excellent treatment of an instability phenomena involving growth that is temporally
gxponential.

EXPERIMENTS

The experimental arrangement is shown in Fig. 3. The anncaled OFHC copper cyl-
inders were 10 em (3.9 in.) long. 7.37 ¢cm (2.9 in.) in outside diameter, and had a uniform
wall thickness of 3.81 mm (0.15 in.). With respect to the midsurface radius of 3.493 cm,
the initial radius-to-thickness ratio of each shell was 9.17. The cylinders were enclosed in
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Fig. 3. Experimental arrangement for imploding copper cylinders.

an attenuator of 6.4 mm thick (0.25 in.) ncoprene foam around which was wrapped a layer
of sheet explosive (EL506D). The foam prevents spall and reduces the initial shock wave
magnitude. As shown in Fig. 3, the neoprene foam and sheet explosive were extended beyond
the top of the cylinder by 10 cm and then tailored to converge to a detonator on axis. The
detonation front sweeps over the cylinder at a speed of 7 km s, which is supersonic
relative to the elastic wave speed of copper (4 km s '), Florence (1965) has shown that this
supersonic loading is equivalent to a uniform impulse applied simultaneously to the cylinder
surface.

Perturbations in the impulse come from variations in thickness of the sheet explosive.
The thickness sumpling was taken at 64 equidistant points on a line that becomes cir-
cumferential when the explosive is wrapped around the attenuator. These data were then
represented in spectral form by determining their Fourier coefficients as shown in the
Appendix. The impulse per unit area, [, was taken from the work of Romander (1987).
For our configuration, the impulse calibration constant /, (impulse per unit area per unit
explosive thickness) is /7, = 266,000 dyne-sec cm~’, [nitial geometric imperfections were
not considered because measurements indicated that precise machining of the cylindrical
shells was achieved.

The post-test profiles of the five cylindrical shells were measured by rotating each
cylinder about its axis in a specifically designed apparatus resembling a lathe having a fixed.
radially oriented, linear variable differential transformer (LVDT). The LVDT was part of
the circuit containing an amplifier and a digital oscilloscope. As in the case of the explosive
thickness imperfections, the final shapes were represented in spectral form by determining
their Fourier coctlicients as shown in the Appendix: 2048 data points were used.
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Fig. 4. Spectral distribution of explostve thickness in experiment.

Only the resalts for the cylindrical shell that received the largest impulse (38,900 dyne-
secem ) are presented for comparison with the code and analytic results because this case
had the largest strains (max ¢, = 18.3%) and much more pereeptible dynamic plastic
buckling. The other shells were subjected to impulses ranging from 17,000 to 37.700 dyne-
scc em 7 resulting in final hoop strains ranging from 6.6 to 17.0%. Partial comparisons
indicated good agreement throughout,

Figure 4 shows the spectral distribution of the explosive thickness obtained by applying
the procedure deseribed in the Appendix. Also shown is a smooth curve through the
cxperimental spectrum to represent a generic spectrum. Kirkpatrick and Holmes (1989)
have shown that such spectra for initial displacement and velocity imperfections lead to a
correct deseription of buckling, [ many similar experiments are involved in an investigation,
only representative tnitial measurements will be required. These generic imperfections were
used in the DYNA3D calculations and the analysis, as well as the actual imperfections.

FINITE ELEMENT SIMULATIONS

The dynamic buckling of the explosively-loaded copper tubes was simulated using
DYNA3D (Hallquist, 1988). DYNA3D is an explicit three-dimensional finite element code
(an explicit finite element code allows the solution to be advanced without the necessity of
global equation solving) for analyzing the large deformation dynamic response of solids
and structures. The equations of motion are integrated in time using the central difference
method. Spatial discretization was achieved with eight-node solid hexahedron elements
with one point integration and hourglass viscosity to control zero energy modes. The
Johnson-Cook constitutive equation was used as described in the following section.

The mesh for the rings consisted of 256 elements around the circumference of the ring,
four clements through the thickness of the ring, and one clement along the length. The
nodes were constrained in the axial direction to provide a plane strain condition. The
impulsive radial load was modeled as an initial inward velocity. Imperfections in the load
were included as a Fourier scries perturbation to the uniform initial velocity as described
in the Appendix.

CONSTITUTIVE EQUATIONS

An appropriate constitute equation for large plastic deformation of annealed OFHC
copper is the Johnson-Cook relation
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o= (A+ Be)(1 +Clné*) (1 - T*), (1)

where

o = equivalent flow stress
¢ = equivalent plastic strain
é* = £/, = dimensionlessstrainrate (§ = 15~ ")

T* = (T~ T00m)/(Tmen — Troom) = homologous temperature.

We found that the constants A, B, C and 7y that fit the Rajendran and Bless (1985)
dynamic tensile test data for strains up to 20% at room temperature are

A = 0.9 kbar (90 MPa)
B = 6.8 kbar (680 MPa)
C=0044

v =09

Examination of eqn (1) revealed that two approximations concerning temperature
and strain rate could be introduced into the analysis. For strains of less than 20% the
temperature rise in copper is such that 7*" « | (the constitutive equation value of m is
about 2). Secondly, the strain rate term

R(E*) = 1+ Clni* ~ 1.32, )

over a wide range of strain rates. In our cylinder, the initial strain rate is about 3200 s '
and the stress-strain curves for various strain rates are within 10% of each other down to
about 320 s *'. At this rate, about 99% of the initial kinetic energy has been absorbed.

An approximation introduced into the analysis and the finite element simulation is the
assumption that the central region of the shell is responding in plane strain. In the analysis,
this approximation for purely radial motion (unperturbed motion) along with zero radial
stress (shell theory) reduce eqn (1) to

oy = a,+kej, 3)
where
2 2 2y
ao=ﬁAR, k=—\7§8<7§> R, R=1.32, 4)

The initial kinetic energy determined by using the impulse calibration value equaled
the plastic work done using the constitutive equation given by (3) and (4) with the constants
A, B and y listed above. For this energy balance calculation, the thickness and radius
changes had to be included for good agreement.

UNPERTURBED MOTION

Let the uniform inward displacement be wq(¢), where ¢ denotes time, the initial radius
and thickness be a4 and kg, and the current radius and thickness be a(r) and A(¢). Then,

wo(r) = ag—a(t) h(t) = apho/a(t) (3
and the circumferential thrust is

N = (o4 +ke))h. 6)
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Substitution of {6) in the equation of motion

N = —phai,

. ! Wy}
“'n+ — 51)+k h— = O. (7)
pa ay

where p is the density of the shell material. In (7), we have made the approximation

£y X Woiag.

gives

If we introduce the dimensionless quantities
Uy = Woldy. T=cllay, ¢ =kip, x=ok. = Ve (8)
where V7= [/ph, is the initial velocity, eqn (7) becomes
(P —ugdiy 40 = —x. 9N
An approximate first integral of (9) is
iy =07 =20 i () g = 2 22+ ) (10

The second integral 1s

k) duy,
T = 2 At L Aty S } i 1 Loy 212 (n
0 [7 =2fx+14/01 + ) e — 2+ 22+ ) g e

This integral is used in the numerical solution of the analytic formulation but not in the
approximate solution. Let 4, = uy(f) be the final engincering strain. Then, egn (10) with
uy(f) = 0 gives the dimensionless energy equation

@/ () g+ {2/ 2+ /2 + )i = )2, (12)

PERTURBED MOTION

Figure 5 shows a cylindrical shell element being subjected to a thrust &, a shear Q,
and a bending moment M. The inward, unperturbed displacement is wo(¢), and the perturbed

Fig. 5. Cylindrical shell element.
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displacement is w(8, 1), giving a total inward displacement of wy(f) + w(8, ¢). The equations
of rotary and translatory motion are

oM 12 13

I
S [ — A i ) ¥ 3
0=2"%0 adg TV aap = ~PHwetw) (13
where
1ép 1 1 1 dw 1
1Ol i w i Z 14
a ol a0+ a‘("°+w)+ a’ d8*  a, (9
is the curvature. In {14), x represents the curvature and is given by
1 1
,\-=£+—;(W+w”)———. (15
a a* ag

Elimination of Q and ¢ from (13) and (14) and use of the unperturbed equation of
motion leads to

M"+ Nw+w")+a’phw = 0, (16)

where primes denote differentiation with respect to 0.
The bending moment is

h2 kh'
M = —J o()zdz =1 PREG T, (17
[%!

in which g, is the hoop strain rate at the midsurface of the shell.

Substitution of the thrust N and moment M, given by (6) and (17), in the equation of
motion (16) leads to the equation governing the perturbed displacement w(f), 1). Converting
this equation to dimensionless form using (8) and

u=wla, B=h¥12a} (18)
results in
i+ () =) " Yu+u")+ fyug " (L —=uy) " Syu+u") =0, 19

with superscript dots and primes denoting differentiation with respect to r and 8. In deriving
(19), products of perturbation terms were neglected and binomial approximations were
made.

MODAL SOLUTION

Let the dimensionless perturbed displacements «(f, t) be represented in the Fourier
form:

o

u(0,7v) = Y, {D,(t)cos(nd) + E,(t)sin (n0)}, 20)

3

ne-l

in which Dy, D, and E, are omitted because D, would only contribute to the unperturbed
displacement and D, and E, would describe rigid body translation. Substitute (20) in the
governing eqn (19) and equate to zero the coefficients of cos (n0) and sin (n8). Then we
obtain two sets of ordinary differential equations for the coefficients D, and E,. These sets
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are
D,~f(0)D, =0, E,—f(0)E,=0. n=23.... (21)
where
S = (L—uy) @+ wp) (n* = D)= Byn(n —)(1 — 1) Hug ') (22)

The form of the function f(t) is shown in Fig. 6. Because y < 1, the function f,(z) is
singular and negative at the start of the motion. Substantial growth of D, and E, cannot
occur until f,(r) becomes positive. If f(7,) = 0, growth occurs only after time f,. when
Sft) > 0 (%, < v < 7). This condition, according to (22), means that growth occurs only in
modes with mode numbers that are less than some cut-off value N(t) where

N = (e+ el (L —ug)' Py, ©> 1. 23

The numerical values for our cylinder (2 = 0.116, = 10", y = 0.9 and 4, = 0.183)
give N(7) = 12, that is, modes defined by n = 2, 3,..., [2 are amplified. If we estimate the
preferred mode number by maximizing f(T) with respect to #n we obtain i = N/ /2, which
for our cylinder gives # = 8 or 9. However, according to (22), the lower the mode number,
the longer the finite amplification time, ©—7,. Each Fourier component representing thrust
and resistive moment has different relative values at cach instant, given by wy(t) in (22),
and for cach mode the thrust increases monotonically and the resistive moment decreases
monotonically with time increase, thereby producing modal instability.

The Fourier series representation of the dimenstonless initial velocity imperfections is

a(0,0) = v Y {a,cos(nl)+b,sin (nl))}, (24)

nel

tn(t)

Fig. 6. Typical fundamental problem coefficient with approximations.
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where ¢ = V/c, V being the initial unperturbed uniform velocity. In (24), the coefficients
are the same as the coefficients determined from the explosive thickness measurements, as
described in the Appendix. With the assumption that the initial geometric imperfections
are negligible, the initial conditions for the functions D,(t) and E,(t) are

D,0)=0, D,0)=va, E(0)=0, E(0)=ub, (25)

In terms of the set of fundamental problems.

An—fi0)4, =0, (26)
A(0) =0, /i,,(O) =1, 27N
we have
D(%) = AfD)ea,.  Ed5) = Acob,, @8)
so that (20) may be written as
wl,1) = v iA,,(t) {a, cos (n0) + b,sin (n0)} (29)
p fz A(D)esc0s (10 + §,). (30)

By comparing the representations (24) and (29), we sce that the perturbed current
displacement is obtained from the initial velocity imperfections by multiplying the ath mode
by the function A4,(r). The function A,(t) is the amplification function. Figure 7 shows the
spectral distribution of the amplification function at four times (47, 47, 7, ©) obtained by
numerical solution of the fundamental problem (26) and (27). At the final time £, the
preferred mode numbers are i = 8 and 9, and the maximum value of A, is about A(?) = 3.9.
The profile obtained with A,(f) is shown in the section below where the experimental,
DYNA3D code, and analytic results are compared.

4.0 T ~ T T
35k

30 F

10 F

05 F

MODE NUMBER (n)
Fig. 7. Growth of amplification spectra.



98 A. L. FLORENCE er ul.

APPROXIMATE SOLUTIONS

We made several approximations in our analysis to derive formulae for the preferred
mode number and the amphification function. These formulae provide explicitly the depen-
dence of the preferred mode number and the growth of the modal amplitude on the
geometrical and material properties.

We outline the approximating procedure and present the results of the sequence of
steps taken. The approximations are appropriate for the parameter range 0.8 <7y < 1.0.
For other ranges. similar approximations can readily be made. For a specific impulse or
initial velocity, the energy eqn (12) determines the final hoop strain, a,. Our approximating
procedure for determining 4, the hoop strain that gives f, = 0, showed that for 7 in the
above range, we may take i, > 0 except for the last mode that can be amplified. This
procedure consisted of linearizing certain terms n £, (). given by (22). The result.
i, = uy(f,) = 0. allowed us to take T, = 0. It is interesting to note that if the exponent y has
smaller values. say 0.3 < v < 0.7, the values of £, no longer form a cluster near the time
origin.

To find a formula for the dimensionless duration of motion, we consider the unper-
turbed motion of a shell with lincar hardening for the same final stress and strain, that is,

oy =a,+k .. =1, 6,=0,+ki) (31)
Let the unperturbed strain for this case be w, (1)), Then
(1 ~utiy+u, = —x, (32)
is the equation of unperturbed motion in which
o= tiay, Co=kp. xo=o00k. vy = Viey. (33)

. N . . - . S
If during integration of (32) we let 203 = 2w, 3, we can derive the approximation for
the duration of motion,

. I {n o x, } -
0= ; , - sin B -
L+ 2a/3) (2 (U2, +20;/3) ity + 2,

The values of o, and &, and hence %, are found explicitly from (31) and the assumption
that the plastic work is the same with linear hardening as in the Johnson-Cook case being
solved (same arcas under the stress strain curves). These conditions of the same final stress,
strain and plastic work give

3 - - A -
- ity iy Uy Uy \ .
A, =2+ - -~ + s by (.
2440, (I+7 2 24y 3

We assume that the duration we require is given by 7 = 7.

The final approximation is for the positive portion of f,(t) given by (22). A math-
ematically convenient form is /,(t) x [(t — £,)/(f —7,)]" f,(f) with the exponent v in the range
0 < v < 1. This form is illustrated in Fig. 6 including the upper and lower bound values
+=0 and v = |. Because in our case T, T 0, we may use f,(t) = (t/f)" f,. With this
approximation, the fundamental problem (26) and (27) becomes

A0) =0 A,0) =1 (37)
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where

E=tf0<i<l) 4i,=7f, (38)

Equation (36) is the Cayley equatlon and its solution satisfying the initial conditions
(37) may be expressed as

AnQ) = T+ p) - (uhn) 4" 2L, uan g ), (39)

in which g = (2+v) ', [ is the gamma function, and /, is the modified Bessel function of

order u.
The upper and lower bounding cases v = 0 and v = | of the amplification function

(39) are
A7) =f;7 "3 sinh f)it (casev = 0), (40)

A (E) = T0@/3) - (3/A) " E 124,81 7/3)  (casev = 1). 4l

For the parametric values of our cylindrical shell problem, we can apply the asymptotic
forms of (40) and (41) for the final values at t = t or & = 1. Thus, (40) and (41) simplify
to

A (D) = (§/4)e™  (casev = 0), (42)

A(F) = [E0(1/3)/3V 02 A et (casey = ). 43)

Figure 8 shows the spectral distributions of the amplification functions at t = 7 given

by the forms (42) and (43). Also shown for comparison is the numerical solution which fics
between the bounds. [n all cases, the preferred modes numbers are 7 = 8 and 9.

If we maximize A,(7) in (42) and (43) with respect to the mode number 7 and express
the result in physical quantitics, we obtain

i = NIJ2 = (66,/E) " @/h), (44)

MODE NUMBER (n)
Fig. 8. Bounding amplification {unction spectra.
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in which £, is the slope of the stress-strain curve at the final stress ¢, and strain &, = ,. Also.
d and A are the final values of the radius and thickness: @ = ay(1 —d,) and £ = A, (1 —u,).

COMPARISON OF RESULTS

Comparisons were made of the final profiles. their modal content, and the amplification
functions obtained from experiment, DYNAD3D finite element calculations. and numerical
solution of the analysis. Results for measured and generic velocity imperfections are pre-
sented.

Table 1 lists the maximum displacement amplitudes, the preferred mode numbers, and
the maximum modal amplitudes. In symbolic form, these are max |w|, A, and max (w/nja =
max |u,|. The agreement is good, especially between DYNA3D and analysis results in which
the dynamic properties are almost the same. Agreement with the experimental result shows
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that generalization of the material properties from dynamic tensile tests is reasonable. The
same conclusions are drawn from the profiles shown in Fig. 9. Small departures of the
experimental profile are attributed to the influence of initial velocity imperfections, that is,
explosive thickness measurements varying on either side of the axial station that was treated
by DYNA3D and analysis. Figure 10 shows that for both actual and generic velocity
imperfections, the modal content is similar between DYNA3D and analysis but weighed
toward the lower modes in the code results. The modal content of the experimental profile
lies within the theoretical distributions but with slightly higher peaks.

Figure 11 shows that DYNA3D and analysis produce very similar amplification
function spectra.

CONCLUSIONS

By comparing the results of DYNA3D calculations on the dynamic plastic buckling of
imploded OFHC copper cylindrical shells with those from classical analysis and exper-
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Table | Comparison of results

max ) ‘ W, .

(mm) Pret.o n max a x 10
Experiment 0.26 59 2
DYNA3D 0.19 3 g6t 27 (13)+
Analysis 0.23 3 10¢7.8)F 2215t

t With generic imperfections.

imental results a measure of confidence was acquired for application of the code to more
complex problems involving dynamic plastic buckling. The agreements of profiles, ampli-
fication spectra and amplification functions are good, especially for a description of plastic
instability that grows exponentially with time.
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APPENDIX

The initial velocity imperfections were obtained from measurements of the explosive thickness. The thickness
sampling was taken at 64 equidistant points on a line that becomes circum(crential when the explosive is wrapped
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around the attenuator. Let k,(9) be the thickness and £, be the average thickness. Then, the departure from the
average is Ak () = h(6) — k.. The Fourier representation of the thickness variation is

~ N
Ah,:_(ﬂ) =Y [a,cos (n0) +b,sin (n0)} = Y c,cos (nG+ o).

where the coefficients are evaluated from the data points. x. by

N-1i

a, = 2 Y (Ah. k), cos (2rnz/N)
N =0
9 N

b, =z:v Y (Ah/hR,), sin (2rna/N)

1=0

¢, = [(ai+8])"*| ¢, =1tan"'(=b,/a,)

and N = 64. The values of c, are plotted in Fig. 3.
The final profile was treated similarly except that N = 2048, If the dimensionless representation is

u(d. %) = i li,| cos (n0+ ¢,).

L

where u(f, T) = w(0. [)/u,. w(#. I) being the final perturbed radial displacement. and we wish to plot |u,] as in
Fig. 9 we note that

r

u(f. £y = Y {D(F)cos (n0) + E(£) sin (nl))},

=

where
2 N
D)=L ¥ u,cos2ana/N) = D,
N5
2 N
E (7)) = N Z u,sin 2nna/N) = E,.
1=
Hence,

) = 1(D3+ EDH').
Note that the final amplification function is given by’

A7) = ld,lfve,.



